Copied to
clipboard

G = C23.578C24order 128 = 27

295th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C25.57C22, C24.386C23, C23.578C24, C22.3522+ 1+4, C2.42D42, (C2×D4)⋊15D4, C22⋊C414D4, C243C423C2, C232D438C2, (C23×C4)⋊25C22, (C2×C42)⋊29C22, C23.204(C2×D4), C2.87(D45D4), (C22×D4)⋊13C22, C23.Q851C2, C23.167(C4○D4), C23.10D475C2, C23.23D481C2, C23.11D475C2, C2.39(C233D4), (C22×C4).176C23, C22.387(C22×D4), C2.C4235C22, C24.3C2273C2, C24.C22119C2, C2.59(C22.32C24), C2.55(C22.29C24), C2.10(C22.54C24), (C2×C4).86(C2×D4), (C2×C4⋊D4)⋊33C2, (C2×C4⋊C4)⋊31C22, (C2×C22≀C2)⋊14C2, (C2×C22⋊C4)⋊28C22, C22.442(C2×C4○D4), (C2×C22.D4)⋊31C2, SmallGroup(128,1410)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.578C24
C1C2C22C23C24C25C2×C22≀C2 — C23.578C24
C1C23 — C23.578C24
C1C23 — C23.578C24
C1C23 — C23.578C24

Generators and relations for C23.578C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=g2=1, d2=b, ab=ba, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >

Subgroups: 980 in 401 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C22.D4, C23×C4, C22×D4, C25, C243C4, C23.23D4, C24.C22, C24.3C22, C232D4, C23.10D4, C23.Q8, C23.11D4, C2×C22≀C2, C2×C4⋊D4, C2×C22.D4, C23.578C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C233D4, C22.29C24, C22.32C24, D42, D45D4, C22.54C24, C23.578C24

Smallest permutation representation of C23.578C24
On 32 points
Generators in S32
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 8)(3 9)(4 6)(5 21)(7 23)(10 22)(12 24)(13 20)(14 30)(15 18)(16 32)(17 26)(19 28)(25 29)(27 31)
(1 25)(2 28)(3 27)(4 26)(5 7)(9 11)(13 23)(14 22)(15 21)(16 24)(18 20)(29 31)
(1 27)(2 14)(3 25)(4 16)(5 29)(6 19)(7 31)(8 17)(9 20)(10 32)(11 18)(12 30)(13 21)(15 23)(22 28)(24 26)

G:=sub<Sym(32)| (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,28)(3,27)(4,26)(5,7)(9,11)(13,23)(14,22)(15,21)(16,24)(18,20)(29,31), (1,27)(2,14)(3,25)(4,16)(5,29)(6,19)(7,31)(8,17)(9,20)(10,32)(11,18)(12,30)(13,21)(15,23)(22,28)(24,26)>;

G:=Group( (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,28)(3,27)(4,26)(5,7)(9,11)(13,23)(14,22)(15,21)(16,24)(18,20)(29,31), (1,27)(2,14)(3,25)(4,16)(5,29)(6,19)(7,31)(8,17)(9,20)(10,32)(11,18)(12,30)(13,21)(15,23)(22,28)(24,26) );

G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,8),(3,9),(4,6),(5,21),(7,23),(10,22),(12,24),(13,20),(14,30),(15,18),(16,32),(17,26),(19,28),(25,29),(27,31)], [(1,25),(2,28),(3,27),(4,26),(5,7),(9,11),(13,23),(14,22),(15,21),(16,24),(18,20),(29,31)], [(1,27),(2,14),(3,25),(4,16),(5,29),(6,19),(7,31),(8,17),(9,20),(10,32),(11,18),(12,30),(13,21),(15,23),(22,28),(24,26)]])

32 conjugacy classes

class 1 2A···2G2H···2O2P4A···4J4K···4O
order12···22···224···44···4
size11···14···484···48···8

32 irreducible representations

dim1111111111112224
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4C4○D42+ 1+4
kernelC23.578C24C243C4C23.23D4C24.C22C24.3C22C232D4C23.10D4C23.Q8C23.11D4C2×C22≀C2C2×C4⋊D4C2×C22.D4C22⋊C4C2×D4C23C22
# reps1111222112114444

Matrix representation of C23.578C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
020000
300000
001000
000100
000033
000002
,
010000
100000
000100
001000
000040
000004
,
100000
010000
004000
000100
000040
000021
,
100000
040000
004000
000400
000010
000034

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,3,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4] >;

C23.578C24 in GAP, Magma, Sage, TeX

C_2^3._{578}C_2^4
% in TeX

G:=Group("C2^3.578C2^4");
// GroupNames label

G:=SmallGroup(128,1410);
// by ID

G=gap.SmallGroup(128,1410);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=g^2=1,d^2=b,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽