p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.57C22, C24.386C23, C23.578C24, C22.3522+ 1+4, C2.42D42, (C2×D4)⋊15D4, C22⋊C4⋊14D4, C24⋊3C4⋊23C2, C23⋊2D4⋊38C2, (C23×C4)⋊25C22, (C2×C42)⋊29C22, C23.204(C2×D4), C2.87(D4⋊5D4), (C22×D4)⋊13C22, C23.Q8⋊51C2, C23.167(C4○D4), C23.10D4⋊75C2, C23.23D4⋊81C2, C23.11D4⋊75C2, C2.39(C23⋊3D4), (C22×C4).176C23, C22.387(C22×D4), C2.C42⋊35C22, C24.3C22⋊73C2, C24.C22⋊119C2, C2.59(C22.32C24), C2.55(C22.29C24), C2.10(C22.54C24), (C2×C4).86(C2×D4), (C2×C4⋊D4)⋊33C2, (C2×C4⋊C4)⋊31C22, (C2×C22≀C2)⋊14C2, (C2×C22⋊C4)⋊28C22, C22.442(C2×C4○D4), (C2×C22.D4)⋊31C2, SmallGroup(128,1410)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.578C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=g2=1, d2=b, ab=ba, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 980 in 401 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C22.D4, C23×C4, C22×D4, C25, C24⋊3C4, C23.23D4, C24.C22, C24.3C22, C23⋊2D4, C23.10D4, C23.Q8, C23.11D4, C2×C22≀C2, C2×C4⋊D4, C2×C22.D4, C23.578C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C23⋊3D4, C22.29C24, C22.32C24, D42, D4⋊5D4, C22.54C24, C23.578C24
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 8)(3 9)(4 6)(5 21)(7 23)(10 22)(12 24)(13 20)(14 30)(15 18)(16 32)(17 26)(19 28)(25 29)(27 31)
(1 25)(2 28)(3 27)(4 26)(5 7)(9 11)(13 23)(14 22)(15 21)(16 24)(18 20)(29 31)
(1 27)(2 14)(3 25)(4 16)(5 29)(6 19)(7 31)(8 17)(9 20)(10 32)(11 18)(12 30)(13 21)(15 23)(22 28)(24 26)
G:=sub<Sym(32)| (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,28)(3,27)(4,26)(5,7)(9,11)(13,23)(14,22)(15,21)(16,24)(18,20)(29,31), (1,27)(2,14)(3,25)(4,16)(5,29)(6,19)(7,31)(8,17)(9,20)(10,32)(11,18)(12,30)(13,21)(15,23)(22,28)(24,26)>;
G:=Group( (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,28)(3,27)(4,26)(5,7)(9,11)(13,23)(14,22)(15,21)(16,24)(18,20)(29,31), (1,27)(2,14)(3,25)(4,16)(5,29)(6,19)(7,31)(8,17)(9,20)(10,32)(11,18)(12,30)(13,21)(15,23)(22,28)(24,26) );
G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,8),(3,9),(4,6),(5,21),(7,23),(10,22),(12,24),(13,20),(14,30),(15,18),(16,32),(17,26),(19,28),(25,29),(27,31)], [(1,25),(2,28),(3,27),(4,26),(5,7),(9,11),(13,23),(14,22),(15,21),(16,24),(18,20),(29,31)], [(1,27),(2,14),(3,25),(4,16),(5,29),(6,19),(7,31),(8,17),(9,20),(10,32),(11,18),(12,30),(13,21),(15,23),(22,28),(24,26)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 4A | ··· | 4J | 4K | ··· | 4O |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.578C24 | C24⋊3C4 | C23.23D4 | C24.C22 | C24.3C22 | C23⋊2D4 | C23.10D4 | C23.Q8 | C23.11D4 | C2×C22≀C2 | C2×C4⋊D4 | C2×C22.D4 | C22⋊C4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 4 |
Matrix representation of C23.578C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,3,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4] >;
C23.578C24 in GAP, Magma, Sage, TeX
C_2^3._{578}C_2^4
% in TeX
G:=Group("C2^3.578C2^4");
// GroupNames label
G:=SmallGroup(128,1410);
// by ID
G=gap.SmallGroup(128,1410);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=g^2=1,d^2=b,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations